(таблица). При раздельном способе в первый срок уборки влажность зерна не превышала 24,8%. Однако при уборке ярового тритикале 18 августа в фазу полной спелости при влажности зерна 12-16% (за исключением сорта Кармен) разница во влажности и урожайности зерна между способами уборки была незначительной, а также если учесть, что август характеризуется неустойчивой погодой (периодическим выпадением осадков) поэтому более выгодным является прямое комбайнирование. В результате наибольшая урожайность зерна была получена при третьем сроке уборке 18 августа у всех изучаемых сортов тритикале.

Таблица Влияние сроков и способов уборки на урожай зерна ярового тритикале, ц/га

Дата уборки, фактор А	Способ уборки, фактор Б	Сорт, фактор В				
		Укро	Ярило	Кармен		
04 августа	прямой	20,4	17,6	20,3		
	раздельный	23,0	20,3	21,4		
11 августа	прямой	23,4	20,3	24,2		
	раздельный	26,5	22,5	24,4		
18 августа	прямой	29,4	25,0	26,4		
	раздельный	31,7	27,8	27,4		
HCP = 1,4 HCPa = 0,5 HCP6 = 0,4 HCPB = 0,6						

Таким образом, наибольший урожай зерна тритикале отмечен у сорта Укро (31,7 ц/га) при уборке 18 августа раздельным способом. При оценке биохимического анализа зерна отмечено наибольшее содержание белка у изучаемых сортов тритикале при уборке 18 августа, а содержание жира и клетчатки колебалось незначительно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шиндин И.М., Сортовые ресурсы Дальнего Востока [Текст] // И.М. Шиндин, В.В. Бочкарёв / Биробиджан: И КАРП ДВО РАН, Уссурийск: ПГСХА, 1998. 110 с.
- 2. FAO [Электронный ресурс]. URL: http://www.fao.org/ worldfoodsituation/csdb/ru (дата обращения 01.03.2017)
- 3. Доспехов Б.А. Методика полевого опыта [Текст] / Б.А. Доспехов. М.: Агропромиздат, 1985. 351 с.

УДК 635.64:631.811.98:631.544 ГРНТИ 68.35.51; 68.33.29

ВЛИЯНИЕ РЕГУЛЯТОРОВ РОСТА НА ПРОДУКТИВНОСТЬ ТОМАТА В УСЛОВИЯХ ЗАЩИЩЕННОГО ГРУНТА Новак К.Н., студент

Научный руководитель – Селиванова М.В., канд. с.-х. наук Ставропольский государственный аграрный университет, г. Ставрополь

Аннотация. В статье приводиться сравнительная оценка регуляторов роста томатов, которые применялись в течение летне-осеннего оборота шестой световой зоны. В результате исследований были определены наилучшие регуляторы роста.

Ключевые слова: томат, регулятор роста, защищенный грунт, урожайность, площадь листьев, степень завязываемости плодов, средняя масса плода.

Томат — это однолетнее и многолетнее травянистое растение семейства пасленовые. Он требователен к температурному и световому режимам, а также к условиям питания. Регуляторы роста, которые помогают определенным частям растения развиваться наилучшим образом в определенные периоды роста, используются для повышения урожайности и качества плодов томата [3, 5].

Цель исследований – изучить эффективность регуляторов роста в технологии выращивания томата в условиях защищенного грунта.

Исследования проводились в летне-осенний оборот 2015 г. в лаборатории теплично-оранжерейного комплекса ФГБОУ ВО Ставропольского государственного аграрного университета.

Объектами исследования были растения томата Комит F1, регуляторы роста крезацин, эпин-экстра, силк, циркон. Регуляторы роста крезацин, силк иэпин-экстра применяли в некорневую обработку три раза с интервалом 2 недели: 1-я обработка - в фазу цветения первой кисти. Циркон применяли для корневой обработки в фазу 3-4 настоящих листьев и при цветении 1-й кисти. Обработку растений томата регуляторами роста в концентрации 0,01 % проводили в соответствии с общими рекомендациями для овощных культур.

В задачи исследований входило определение площади листьев томата, средней массы плода, степени завязываемости плодов томата и урожайности.

Основной показатель вегетативного состояния растений - это размер листового аппарата. При применении регуляторов роста активизировались обменные процессы, протекающие как на уровне клетки, так и на уровне целого растения, в результате чего размер фотосинтезирующего аппарата томата существенно увеличился относительно контроля на 0.018-0.033 м²/растение (табл.).

Таблица Влияние регуляторов роста на продуктивность томата

	Площадь	Средняя	Степень завязывае-	Vnovaйность
Вариант	листьев томата,			Урожайность, кг/м²
	м ² /растение	плода, г	%	KI / WI
Контроль (фон)	1,783	171	66,5	11,9
Фон + крезацин	1,801	181	70,5	13,3
Фон + эпин-экстра	1,816	176	73,5	13,5
Фон + силк	1,805	174	69,0	13,0
Фон + циркон	1,816	179	71,0	13,3
HCP _{0,05}	0,012	5	2	0,3

Самым эффективным было применение эпин-экстра и циркона. При обработке растений цирконом площадь листьев томата существенно увеличилась по сравнению с контролем на 0.035 м^2 /растение, эпин-экстра — на 0.033.

При селекции современных гибридов томата важную роль для ученых приобретает повышение их стрессоустойчивости. Часто растения реагируют на этот негативный фактор снижением степени завязываемости плодов [1, 2, 4].

Высокую степень завязываемости плодов томата мы наблюдали при применении эпин-экстра, который является природным адаптогеном и стресс-корректором [6, 7]. При применении эпин-экстра процент завязавшихся плодов достоверно увеличился по сравнению с контролем на 7 %. При обработке растений томата цирконом и крезацином степень завязываемости плодов существенно увеличилась по отношению к контролю на 4 и 4,5 % соответственно, силком, несущественно — на 2,5 %.

С увеличением площадей возделывания томата в защищенном грунте возрастают требования к такому показателю продуктивности растений как средняя масса плода. Применение регуляторов роста способствовало увеличению средней массы плода томата. При обработке растений томата силком и эпином-экстра средняя масса плода несущественно возросла по сравнению с контролем — на 5 и 3 г соответственно. Существенному увеличению средней массы плода томата относительно контроля способствовало применение циркона — на 8 г, крезацина — на 10 г.

Важнейшим показателем ценности сорта или гибрида является его урожайность. Среди изучаемых регуляторов роста наибольшее влияние на увеличение урожайности томата оказало применение эпин-экстра. При обработке растений эпин-экстра урожайность томата достоверно увеличилась по сравнению с контролем на 1,6 кг/м².

Для усиления метаболизма и повышения общего иммунитета в растениях мы использовали циркон, который способствовал существенному увеличению урожайности томата по отношению к контролю на $1,5~\rm kr/m^2$. При применении крезацина, стимулирующего процесс корнеобразования, рост растений, повышающего устойчивость растений к болезням, улучшающего качество продукции, урожайность томата существенно увеличилась по сравнению с контролем на $1,4~\rm kr/m^2$. Меньше всего урожайность томата увеличилась по отношению к контролю при применении силка — на $1,1~\rm kr/m^2$.

Таким образом, применение в технологии выращивания томата крезацина, эпинэкстра, силка и циркона, активизирующих протекание обменных процессов в растительном организме, способствовало увеличению площади листьев, завязываемости плодов и средней массы плода, что впоследствии выразилось в прибавке урожайности томата по сравнению с контролем на $1,1-1,6~{\rm кг/m^2}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Селиванова, М.В. Влияние синергизма биологически активных веществ и минеральных удобрений на урожайность и качество плодов томата [Текст] / М. В. Селиванова, М. С. Сигида, Е. С. Романенко и др. // Аграрная наука сельскому хозяйству: сборник статей. Барнаул: Алтайский ГАУ, 2016. С. 235-236.
- 2. Новичихин, Н. А. Влияние соединений йода, кремния и серебра на продуктивность томата [Текст] / Н. А. Новичихин, М. В. Селиванова, М. С. Сигида // Сборник научных трудов ВНИИОК. 2016. Т. 1. N 9. С. 441-443.
- 3. Проскуриков, Ю.П. Применение удобрений направленного действия один из способов повышения урожайности и качества продукции томата в защищённом грунте [Текст] / Ю. П. Проскурников, М. В. Селиванова, О. Ю. Лобанкова и др. // Современные проблемы науки и образования. 2013. № 6. С. 954.
- 4. Селиванова, М. В. Влияние регуляторов роста на урожайность и качество продукции томата в условиях защищенного грунта шестой световой зоны [Текст] / М. В. Селиванова // Инновационные технологии в науке и образовании. − 2015. № 1 (1). − С. 243-244.
- 5. Учебный практикум по дисциплине «Овощеводство»: учебное пособие / И. П. Барабаш, М. В. Селиванова, Е. С. Романенко [и др.] Ставрополь: Ставропольское издательство «Параграф», 2015. 116 с.
- 6. Selivanova, M.V. Effect of growth factors on the metabolism of cucumber crops grown in a greenhouse /M.V. Selivanova, O.Yu. Lobankova, E. S. Romanenko and others // Biosciences biotechnology research Asia. 2015. T. 12. № 2. Pp. 1397-1404.
- 7. Selivanova, M.V. Some aspects of the assessment of quality of tomatoes in the application of fertilizer in protected ground / M.V. Selivanova, O.Yu. Lobankova, Yu.I. Grechishkina and others. Japanese educational and scientific review. − T. XI. № 1 (9). − Pp. 298-304.